Returns the hyperbolic sine of the argument.
The sinh
function calculates the hyperbolic sine of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic sine is defined as: sinh(z) = ˝(ez-e-z)
Returns the hyperbolic cosine of the argument.
The cosh
function calculates the hyperbolic cosine of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic cosine is defined as: cosh(z) = ˝(ez+e-z)
Returns the hyperbolic tangent of the argument.
The tanh
function calculates the hyperbolic tangent of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic tangent is defined as: tanh(z) = sinh(z)/cosh(z)
Returns the inverse hyperbolic sine of the argument.
The asinh
function calculates the inverse hyperbolic sine of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
asinh
is the reverse of sinh
, i.e. asinh(sinh(z)) = z.
Returns the inverse hyperbolic cosine of the argument.
The acosh
function calculates the inverse hyperbolic cosine of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
acosh
is the reverse of cosh
, i.e. acosh(cosh(z)) = z.
Returns the inverse hyperbolic tangent of the argument.
The atanh
function calculates the inverse hyperbolic tangent of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
atanh
is the reverse of tanh
, i.e. atanh(tanh(z)) = z.
Returns the hyperbolic cosecant of the argument.
The csch
function calculates the hyperbolic cosecant of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic cosecant is defined as: csch(z) = 1/sinh(z) = 2/(ez-e-z)
Returns the hyperbolic secant of the argument.
The sech
function calculates the hyperbolic secant of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic secant is defined as: sech(z) = 1/cosh(z) = 2/(ez+e-z)
Returns the hyperbolic cotangent of the argument.
The coth
function calculates the hyperbolic cotangent of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
Hyperbolic cotangent is defined as: coth(z) = 1/tanh(z) = cosh(z)/sinh(z) = (ez + e-z)/(ez - e-z)
Returns the inverse hyperbolic cosecant of the argument.
The acsch
function calculates the inverse hyperbolic cosecant of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
acsch
is the reverse of csch
, i.e. acsch(csch(z)) = z.
Returns the inverse hyperbolic secant of the argument.
The asech
function calculates the inverse hyperbolic secant of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
asech
is the reverse of sech
, i.e. asech(sech(z)) = z.
Returns the inverse hyperbolic cotangent of the argument.
The acoth
function calculates the inverse hyperbolic cotangent of z
.
z
may be any numeric expression that evaluates to a real number or a complex number.
acoth
is the reverse of coth
, i.e. acoth(coth(z)) = z.
For real numbers acoth
is undefined in the interval [-1;1].