Hyperbolic

sinh function

Returns the hyperbolic sine of the argument.

Syntax

sinh(z)

Description

The sinh function calculates the hyperbolic sine of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic sine is defined as: sinh(z) = ˝(ez-e-z)

cosh function

Returns the hyperbolic cosine of the argument.

Syntax

cosh(z)

Description

The cosh function calculates the hyperbolic cosine of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic cosine is defined as: cosh(z) = ˝(ez+e-z)

tanh function

Returns the hyperbolic tangent of the argument.

Syntax

tanh(z)

Description

The tanh function calculates the hyperbolic tangent of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic tangent is defined as: tanh(z) = sinh(z)/cosh(z)

asinh function

Returns the inverse hyperbolic sine of the argument.

Syntax

asinh(z)

Description

The asinh function calculates the inverse hyperbolic sine of z. z may be any numeric expression that evaluates to a real number or a complex number. asinh is the reverse of sinh, i.e. asinh(sinh(z)) = z.

acosh function

Returns the inverse hyperbolic cosine of the argument.

Syntax

acosh(z)

Description

The acosh function calculates the inverse hyperbolic cosine of z. z may be any numeric expression that evaluates to a real number or a complex number. acosh is the reverse of cosh, i.e. acosh(cosh(z)) = z.

atanh function

Returns the inverse hyperbolic tangent of the argument.

Syntax

atanh(z)

Description

The atanh function calculates the inverse hyperbolic tangent of z. z may be any numeric expression that evaluates to a real number or a complex number. atanh is the reverse of tanh, i.e. atanh(tanh(z)) = z.

csch function

Returns the hyperbolic cosecant of the argument.

Syntax

csch(z)

Description

The csch function calculates the hyperbolic cosecant of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic cosecant is defined as: csch(z) = 1/sinh(z) = 2/(ez-e-z)

sech function

Returns the hyperbolic secant of the argument.

Syntax

sech(z)

Description

The sech function calculates the hyperbolic secant of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic secant is defined as: sech(z) = 1/cosh(z) = 2/(ez+e-z)

coth function

Returns the hyperbolic cotangent of the argument.

Syntax

coth(z)

Description

The coth function calculates the hyperbolic cotangent of z. z may be any numeric expression that evaluates to a real number or a complex number.

Hyperbolic cotangent is defined as: coth(z) = 1/tanh(z) = cosh(z)/sinh(z) = (ez + e-z)/(ez - e-z)

acsch function

Returns the inverse hyperbolic cosecant of the argument.

Syntax

acsch(z)

Description

The acsch function calculates the inverse hyperbolic cosecant of z. z may be any numeric expression that evaluates to a real number or a complex number. acsch is the reverse of csch, i.e. acsch(csch(z)) = z.

asech function

Returns the inverse hyperbolic secant of the argument.

Syntax

asech(z)

Description

The asech function calculates the inverse hyperbolic secant of z. z may be any numeric expression that evaluates to a real number or a complex number. asech is the reverse of sech, i.e. asech(sech(z)) = z.

acoth function

Returns the inverse hyperbolic cotangent of the argument.

Syntax

acoth(z)

Description

The acoth function calculates the inverse hyperbolic cotangent of z. z may be any numeric expression that evaluates to a real number or a complex number. acoth is the reverse of coth, i.e. acoth(coth(z)) = z. For real numbers acoth is undefined in the interval [-1;1].